Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Ein 10-Tage-MA würde die Schlusskurse ausgleichen Für die ersten 10 Tage als erster Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis fallen lassen, den Preis am Tag 11 hinzufügen und den Durchschnitt nehmen, und so weiter wie unten gezeigt. Wie bereits erwähnt, verbleiben MAs die derzeitige Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA ein viel größeres Maß an Verzögerung haben als ein 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der MA zu verwenden hängt von den Handelszielen ab, wobei kürzere MAs für kurzfristige Handels - und längerfristige MAs für langfristige Investoren besser geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Handelssignale. MAs vermitteln auch eigene Handelssignale, oder wenn zwei Durchschnitte kreuzen. Eine aufsteigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend ist. Während eine abnehmende MA anzeigt, dass es sich in einem Abwärtstrend befindet. Ebenso wird die Aufwärtsbewegung mit einem bullish Crossover bestätigt. Die auftritt, wenn ein kurzfristiges MA über einen längerfristigen MA kreuzt. Abwärts-Impuls wird mit einem bärigen Crossover bestätigt, der auftritt, wenn ein kurzfristiges MA unterhalb eines längerfristigen MA.8.4 verschiebt durchschnittliche Modelle anstatt die vergangenen Werte der Prognosemenge in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler In einem regressionsähnlichen Modell. Y c et theta e theta e dots theta e, wo et ist weißes Rauschen. Wir bezeichnen dies als MA (q) Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Beachten Sie, dass jeder Wert von yt als ein gewichteter gleitender Durchschnitt der letzten Prognosefehler gedacht werden kann. Allerdings sollten die gleitenden durchschnittlichen Modelle nicht mit der gleitenden durchschnittlichen Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die durchschnittliche Glättung für die Schätzung des Trendzyklus vergangener Werte verwendet wird. Abbildung 8.6: Zwei Beispiele von Daten aus bewegten Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit y t 20e t 0.8e t-1. Rechts: MA (2) mit y t e t - e t-1 0.8e t-2. In beiden Fällen ist e t normal verteilt weißes Rauschen mit mittlerem Null und Varianz eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) Modell und einem MA (2) Modell. Das Ändern der Parameter theta1, punkte, thetaq führt zu unterschiedlichen zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerbegriffs nur den Maßstab der Serie ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) Modell als MA (Infty) Modell zu schreiben. Zum Beispiel können wir mit wiederholter Substitution dies für ein AR (1) - Modell nachweisen: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amph phi13y phi12e phi1 e et amptext endgesetzt -1 lt phi1 lt 1, der Wert von phi1k wird kleiner, wenn k größer wird. So erhalten wir schließlich yt et phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann heißt das MA-Modell invertierbar. Das heißt, dass wir einen invertierbaren MA (q) Prozess als AR (Infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA Modellen in AR Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis leichter machen können. Die Invertierbarkeitsbeschränkungen ähneln den stationären Einschränkungen. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) Modell: -1ltθ2lt1, theta2theta1 gt-1, theta1 - θ2 lt 1. Kompliziertere Bedingungen gelten für qge3. Auch hier wird R bei der Schätzung der Modelle auf diese Einschränkungen eingehen.
No comments:
Post a Comment